
Hard-real-time Resource Management
for Autonomous Spacecraft1

Erann Gat
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive, Pasadena, CA 91109
gat@jpl.nasa.gov

1 0-7803-5846-5/00/$10.00 © 2000 IEEE

Abstract— This paper describes tickets, a computational
mechanism for hard-real-time autonomous resource
management. Autonomous spacecraft control can be
considered abstractly as a computational process whose
outputs are spacecraft commands. In order to make the
engineering of such systems tractable, these computations
are usually organized as multiple parallel threads of control.
 It is sometimes necessary, particularly in emergency
situations, for one thread of control not only to issue certain
commands, but to actively prevent the issuing of other
commands by other threads of control. Tickets are software
objects that act as intermediaries between control processes
and low-level commands. In order to gain access to a low-
level command a control process must be in posession of a
valid ticket for that command. Tickets can be invalidated in
constant time. This allows hard-real-time guarantees of
performance for denying access to a particular low-level
command or set of commands.

TABLE OF CONTENTS

1. INTRODUCTION
2. TICKETS
3. CONSTRAINED TICKETS
4. SUMMARY AND CONCLUSIONS

1. INTRODUCTION

A resource is anything that causes dependencies among
components of system state. For example, electrical power
is a resource that causes dependencies among device power
states: the amount of power available constrains the
combinations of device power states that are physically
achievable.

Failure to honor resource constraints can result in loss of
spacecraft, so resource management is a critical part of any
spacecraft control architecture. Traditionally, resource
management has been done on the ground through careful
modelling of the effects on system state of open-loop time-
based command sequences. But this approach is expensive,
and does not support new mission concepts that require
autonomous operation.

Resource management in general is a very complicated
problem that has an extensive literature, e.g. [1]. Most
work in the field has focused on resource management
through planning and scheduling in advance of actual
performance. In this paper we focus on a narrow and largely

ignored aspect of the problem: hard-real-time resource
management for autonomous reactive responses to
contingencies in the context of a control system consisting
of a number of independent parallel threads of control. This
situation arises in state-of-the-art autonomous spacecraft
control systems such as the JPL Mission Data System
(MDS) [2]. (There are simpler solutions to the problem that
are applicable in cases where execution control is
centralized, as in the ARC/JPL Remote Agent (RA) [3]).

To motivate our solution, consider the following example: a
spacecraft is performing a science observation using a
camera when a thruster valve sticks open and the spacecraft
starts to spin up. The only way to shut off the flow of
propellant to the thruster is to activate a cutoff valve, which
has a transient power draw higher than the current power
margin. Attempting to activate the cutoff valve with an
inadequate power margin will result in a bus trip and loss of
spacecraft. The only way to save the spacecraft is to turn off
the power to the camera and make sure it stays off while
actuating the cutoff valve. This has to be done quickly or
the spacecraft will spin up to unrecoverable rates.

It turns out that solving this problem while meeting all the
stipulated conditions is quite tricky. This is somewhat
counterintuitive, so it is useful to start with some obvious
solutions and describe why they don’t work.

Things that don’t work

The simplest solution is to simply have the system issue
the commands to turn off the camera and then actuate the
cutoff valve. This solution fails because of the stipulation
that the control system is multi-threaded. There is no
guarantee that some other thread of control will not turn the
camera back on between the time when it is turned off and
when the cutoff valve is actuated, which would result in
loss of spacecraft. In fact this situation is not at all
unlikely. It is common to assign threads of control the
responsibility for maintaining goal conditions in the
system, so there would be a thread whose responsibility it
is to make sure that the camera remains on for some
specified period of time. For example, in the MDS
architecture the camera would likely have been turned on in
service of a goal [2] to maintain the camera power on for
the duration of an observation. If the camera were to
suddenly be turned off, the thread responsible for
maintaining the camera power goal would try to turn the
camera back on, resulting in a race condition (between the
camera-on command and the thruster cutoff valve actuation

command) with potentially fatal consequences.

A possible patch to this solution is to try to insure that the
thread responsible for keeping the camera on is simply
prevented from running until the cutoff valve is actuated.
However, there are no guarantees about how long this thread
will have to be disabled (since turning off the camera could
fail due to transient errors), and it might be performing
time-critical tasks in addition to keeping the camera on.
This solution could work in special cases, but not in
general.
A second solution is to explicitly manage the resource
responsible for the dangerous state coupling, in this case
electrical power. For example, we could require that the
camera-power thread request and receive an allocation for
power before turning on the camera, e.g.:

PowerAllocation A =
getPowerAllocation(cameraPowerDraw);

if (A != NULL) turnCameraPowerOn();

The first problem with this approach is that its reliability
depends entirely on a coding convention; nothing actually
prevents a thread from turning the camera on without first
obtaining a power allocation. A single violation of this
convention can result in loss of spacecraft. And the
convention is not nearly as simple as the above example
implies. Simply preceding every call to
turnCameraPowerOn with a call to getPowerAllocation will
not work. For example, we might want to call
turnCameraPowerOn to turn the camera back on after an
SEU turned it off. In such a case we (presumably) already
have an allocation, and we don’t need to get another one:

PowerAllocation cameraPwrAlloc;

while (1) {
 Event e = getNextEvent();
 case (e.type) {
 ...
 // Turn camera on
 if (!cameraPwrAlloc.valid())
 // Only need this if we don’t have
 // an allocation already
 cameraPwrAlloc =

getPowerAllocation(cameraPowerDraw);
 if (cameraPwrAlloc.valid())
 turnCameraPowerOn();
 else
 // handle failed allocation
 ...
}

We also have to remember to give the allocation back when
we’re done with it:

 // Inside the event loop
 ...
 // Turn camera off
 turnCameraPowerOff();
 cameraPwrAlloc.release();
 ...

Even this is not yet enough. Calling turnCameraPowerOff
does not guarantee that the camera is actually off, since
faults can prevent the command from working:

 // Inside the event loop
 ...
 // Turn camera off
 turnCameraPowerOff();
 // Wait for effects to trickle
 // through state determination
 if (cameraPowerState.currentEstimate == OFF)
 cameraPwrAlloc.release();
 else
 // handle fault case
 ...

And even this is still not correct code! All of the
conditionals need to run as critical sections, otherwise an
allocation could be withdrawn between its validity check
and the issuing of a command that relies on the allocation
being valid.

Our simple coding convention is no longer so simple, and
we should feel some discomfort gambling the life of our
spacecraft on this convention being followed flawlessly
throughout the flight code. The critical-section requirements
are particularly pernicious, as the requirements are not
intuitively obvious, and the bugs introduced by failing to
adhere to them are intermittent, rare, and highly dependent
on subtle differences in timing. It is possible to have such
a bug that never manifests itself during testing suddenly
appear in flight.

A better solution would be to encapsulate the requirements
in an object class that is part of our programming
infrastructure. That way we only have to insure the
correctness of the infrastructure implementation, and not
every individual use. This would reduce verification costs
while making the code more reliable. In the next section we
describe such an encapsulation.

2. TICKETS

We have developed a run-time resource management
mechanism called a ticket. Tickets are software objects that
act as brokers for access to low-level commands. They
provide two major advantages over traditional resource
management techniques. They do not rely on progammers
adhering to a complex coding convention, and they provide
guaranteed hard-real-time revocation of resources in
emergency situations. Tickets can also be used to manage
real-time shared resources, e.g. power sharing between
thruster valves and catalyst bed heaters, and consumable
resources like energy and propellant.

Tickets are based on a fundamental change in the way
resources are viewed. Instead of viewing states like power
margin as resources, tickets view commands as resources.
Recall that a resource is defined as anything that causes
dependencies among components of system state and thus
leads to potential goal conflicts. But effects usually have

multiple causes, any of which could be considered a
resource. Physics has no preference for one cause over
another, making this a design choice.

For example, consider the situation where a device is turned
on with insufficient power margin on the power bus
resulting in a bus trip. There are two factors that together
produce the bus trip: 1) a power margin below some
threshold and 2) the execution of the power-on command.
Both of these are necessary conditions for the bus trip, and
so either one of them can be considered a resource according
to our definition. Choosing power as the resource is useful
when humans are in the loop planning command sequences,
but as pointed out in the previous section it presents
difficult problems for autonomous systems.

A control thread using tickets doesn’t request access to
power, but rather access to power commands. This access is
granted in the form of a ticket object, which has methods
associated with it that invoke the actual primitive
commands, to which threads have no direct access.
Primitive invocation is subject to the state of a boolean
private attribute of the ticket called the validity flag. If the
validity flag is false then ticket invocation fails.
Reclaiming a resource therefore becomes a simple matter of
setting the validity flag to false, a constant-time operation.
Because threads have no access to primitives except through
tickets and tickets enforce their validity flags internally this
guarantees that resources cannot be accessed unless they are
allocated.

Ticket agents

Tickets are granted by ticket agent objects. There is a ticket
agent for every group of primitive commands for which a
ticket may be granted. How this grouping is done is a
design decision. For exampe, there may be a single ticket
agent for all power-related commands, or there may be a
separate ticket agent for the power commands for each
device.

A ticket agent grants tickets according to a ticket policy.
The simplest policy is to grant only a single valid ticket at
any one time to the requestor with the highest priority. If
more than one requestor has the highest priority then tickets
are granted according to some heuristic like first-come-first-
served.

This simple policy is sufficient to solve the stuck-thruster
emergency described in section 1. In this example there are
two threads of control, a camera monitor thread whose job it
is to keep the camera on for an observation, and an
emergency thruster cutoff thread whose job it is to actuate
the thruster cutoff valve when the thruster sticks open.

There are several ways to organize the ticket agents for this
example. The most straightforward is to create a single
ticket agent object for both the truster cutoff valve actuation
command and the camera power on/off command(s), and to
make this object also be responsible for controlling the
power margin state.

The example works as follows: first, the camera monitor
thread requests a ticket for the camera power commands.
Since there are no outstanding tickets for these commands
the request is granted and the camera monitor receives a
valid ticket. The camera monitor then uses this ticket to
turn on the camera.

When the thruster sticks open we again have several design
alternatives. The first is for the emergency thruster cutoff
thread to request a ticket for the camera power commands so
that it can turn the camera off to make power available for
the cutoff valve actuation. This request has a higher priority
(spacecraft emergency) than the camera monitor thread had
(science observation) so the ticket agent invalidates the
camera monitor thread’s ticket and issues a new ticket to the
thruster cutoff thread. The thruster cutoff thread uses this
ticket to turn off the camera, after which it actuates the
cutoff valve.

The camera monitor thread has no knowledge of the thruster
emergency (it has no knowledge of thrusters at all) so it will
perceive the camera’s turning off as an anomaly from which
it will try to recovery by attempting to turn the camera back
on. However, the camera monitor’s ticket has been
invalidated so these attempts will have no effect. This
eliminates the dangerous race condition that would have
existed without tickets.

Once the emergency thread has finished actuating the cutoff
valve, it releases its ticket for the camera commands (since
it no longer needs to control the camera power state). When
this happens, the camera monitor’s ticket is once again the
highest priority ticket, and so it is re-validated by the ticket
agent. The camera monitor is now able to turn the camera
back on. If circumstances permit (e.g. no deadlines have
passed, attitude control is still possible) the observation
could be restarted at this point.

Camera
Monitor

Ticket
Agent

Thruster
Emergency

Handler

RequestTicket priority=1

CreateTicket1

CameraOn

RequestTicket priority=2

Invalidate
Ticket2Create

TurnOn

CameraOff

TurnOff

CameraOn

Thruster
Cutoff

Release

Revoke

Validate

CameraOn

TurnOn

Figure 1: UML sequence diagram for simple prioritized
ticket granting policy.

It is easily demonstrated that all of these processes are
constant-time operations. The list of outstanding tickets is
kept sorted according to priority. There is only one valid
ticket at any givn time, and it is always at the front of the
list.

A more realistic policy

The scenario just described is somewhat unrealistic because
the thruster emergency thread would generally not be aware
that the camera needs to be turned off before actuating the
thruster cutoff valve. The emergency thread would simply
request a ticket for the cutoff valve actuation command and
rely on the ticket agent to take whatever actions would be
needed to be able to issue the ticket safely.

In this particular case this is straightforward because we
stipulated earlier that a single object is the ticket agent for
both the camera and thruster commands, as well as being
responsible for managing the power margin. This object’s
ticket-granting policy would be to issue as many tickets as
possible in priority order under the current power
constraints.

In our example, the camera monitor would request and
receive a ticket for the camera power commands as before.
The ticket agent would internally bookkeep a power
allocation for this ticket, since the camera can now be turned
on at any time. Then the thruster emergency thread would
request a ticket for the cutoff valve actuation command.
There is not enough power left to satisfy this request, so the
ticket agent searches for lower-priority allocations that can
be usurped. In this case it finds one: the camera power
allocation. This allocation can be made available by
invalidating the ticket and turning the camera off. Note
that simply invalidating the ticket is not enough. There is
no inherent connection between a ticket and the actual state
of the system. Tickets only constrain the possible states of
the system. The actual state is determined by the objects
that issue actual commands through the tickets they hold.

Note that tickets do not preclude more traditional resource
allocation bookkeeping. Tickets are simply a mechanism of
enforcing the connection between allocations and actions
that actually consume the allocated resources.

3. CONSTRAINED TICKETS

In all the examples so far we have considered only electrical
power as a resource. Power is easy to deal with because it
is non-consumable; the amount of resource used at time T is
a function of system state at time T. But many resources
are consumables, where the amount of resource used at time
T is an integral over system state through time T.

For example, suppose the spacecraft were running on battery
power and an object (an observation manager, say) requests
a ticket for the camera-on command. The ticket agent might
want to enforce a limitation on the total time that the
camera is on in order to avoid depleting the battery.

One possible way to do this is for the ticket agent to
monitor how long the camera has been on and to invalidate
the ticket (and turn the camera off) after the time limit is
reached. But this is a poor solution because it will disrupt
the observation, and whatever energy was consumed by the
camera will have been wasted.

A solution to this problem is for the observation manager to
pass as an argument along with the ticket request the total
time that the camera is needed. The ticket agent can then
determine ahead of time whether enough energy is available
to satisfy the entire request before issuing the ticket.

There is still a problem: any time limit associated with the
ticket still needs to be enforced, and at the moment it is the
burden of the ticket agent to enforce the time limit by
invalidating the ticket and issuing whatever cleanup
commands are needed (e.g. turn camera off). But the ticket
agent can’t start the timer when the ticket is issued; it has to
wait until the ticket is actually used, that is, when the
command to turn on the camera is actually issued. But the
ticket agent has no access to this information. Commands
sent through a ticket go directly to the hardware, not to the
ticket agent.

Again there are several possible solutions to this problem.
One is to make the ticket send copies of all commands
issued through the ticket back to the ticket agent that issued
the ticket so that the ticket agent can track resource
consumption. A second possibility is to build this
capability directly in to the ticket itself. We choose this
second design for reasons of modularity

To implement this solution, ticket validity is no longer a
simple boolean but is instead a function that is called with
every ticket invocation. The ticket’s command is issued
IFF its validity function returns true on that invocation.
The validity function keeps track of resources used by the
ticket’s commands, and enforces any restrictions, like time
limits, that there might be. In order to keep the mechanism
real-time this function must run in constant-bounded time.
To enforce this, a fixed library of ticket validity functions is
provided, all of which have been statically verified to run in
constant-bounded time.

Ticket validity functions allow sophisticated management of
consumable resources, as well as advanced real-time non-
consumable resource management like electrical power
sharing between thruster valves and catalyst bed heaters. For
example, a ticket can be issued for thruster-firing commands
whose validity function allows those commands to be
issued only when the catalyst bed heater is off.

Because the ticket validity function may contain internal
state (like integrators) and must be constructed on the fly,
they are most easily implemented in languages that have
first-class lexical closures (functions with internal state) like
Lisp or ML. It is also possible to implement them in more
impoverished languages like C++ by having a separate
ticket sub-class for each possible validity function.

4. SUMMARY AND CONCLUSIONS

This paper has described tickets, a computational
mechanism for hard-real-time resource management on
autonomous spacecraft and other mission-critical embedded
autonomous sytems. Tickets encapsulate the complex
control structures associated with real-time resource
management into an object class, making software more
reliable and easier to verify.

Tickets are based on viewing commands rather than states as
resources. States (like power margin) can still be bookkept
as resources internally by ticket agent objects, but they are
no longer considered resources architecturally.

Because tickets work by regulating access to primitive
commands it is necessary that control threads have no direct
access to those commands. Tickets also impose a
computational overhead on control processes, but this
overhead is constant-bounded, so tickets are suitable for
hard-real-time applications.

ACKNOWLEDGEMENTS

This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

REFERENCES

[1] Steve Chien, et al. “Autonomous Planning and
Scheduling for Goal-Based Autonomous Spacecraft.” IEEE
Intelligent Systems, September/October 1998.

[2] Dan Dvorak and Robert Rasmussen. “Software
Architecture Themes in JPL’s Mission Data System.”
Proceedings of the IEEE Aerospace Conference, March
2000.

[3] Barney Pell, et al. “An Autonomous Spacecraft Agent
Prototype.” Autonomous Robots 5(1), March 1998.

Dr. Erann Gat is a senior computer
scientist at the Jet Propulsion
Laboratory, California Institute of
Technology, where he has been
working on autonomous control
architectures since 1988. He is
currently inter-domain architect for the
JPL Mission Data System project. He
escapes the dangers of everyday life in
Los Angeles by pursuing safe hobbies

like skiing, scuba diving, and flying small single-engine
airplanes in bad weather.

