
Integrating Planning and Reacting in a Heterogeneous Asynchronous Architecture
for Controlling Real-World Mobile Robots

Erann Gat
Jet Propulsion Lab, California Institute of Technology

 4800 Oak Grove Drive
Pasadena, California 91109
gat@robotics.jpl.nasa.gov

(Appears in AAAI92)
ABSTRACT

This paper presents a heterogeneous, asynchronous
architecture for controlling autonomous mobile robots
which is capable of controlling a robot performing
multiple tasks in real time in noisy, unpredictable
environments. The architecture produces behavior which
is reliable, task-directed (and taskable), and reactive to
contingencies. Experiments on real and simulated real-
world robots are described. The architecture smoothly
integrates planning and reacting by performing these two
functions asynchronously using heterogeneous
architectural elements, and using the results of planning
to guide the robot's actions but not to control them
directly. The architecture can thus be viewed as a concrete
implementation of Agre and Chapman's plans-as-
communications theory. The central result of this work
is to show that completely unmodified classical AI
programming methodologies using centralized world
models can be usefully incorporated into real-world
embedded reactive systems.

1. Introduction
We have been investigating the problem of controlling

autonomous mobile robots in real world environments in
a way which is reliable, task-directed (and taskable), and
reactive to contingencies. The result of our research is a
control architecture called ATLANTIS1 which combines a
reactive control mechanism with a traditional planning
system. In this paper we describe a series of experiments
using the architecture to control real-world and simulated
real-world robots. We demonstrate that the architecture is
capable of pursuing multiple goals in real time in a
noisy, partially unpredictable environment. The central
result of the work is to show how a traditional symbolic
planner can be smoothly integrated into an embedded
system. We begin by reviewing the difficulties associated
with embedding AI systems into real-world robots.

Controlling autonomous mobile robots is hard for
three fundamental reasons. First, the time available to
decide what to do is limited. A mobile robot must
operate at the pace of its environment. (Elevator doors
and oncoming trucks wait for no theorem prover.)

1ATLANTIS is an acronym which stands for

(among other things): A Three-Layer
Architecture for Navigating Through Intricate
Situations.

Second, many aspects of the world are unpredictable,
making it infeasible to plan a complete course of action
in advance. Third, sensors cannot provide complete and
accurate information about the environment. These are
fundamental problems because they cannot ever be
engineered away. No matter how powerful a computer we
build, a finite amount of time will allow only a finite
amount of computation. No matter how good a sensor
we may build there is always information that it cannot
deliver because the relevant situation is hidden behind a
wall or across town. No matter how good our domain
theory may be, many important aspects of the world
simply cannot be predicted reliably.

Related Work: Classically the problem of mobile
robot control has been addressed within a framework of
functional decomposition into sensing, planning and
acting components. There is a vast literature on the
traditional sense-plan-act architecture and its variations. A
good recent example of a sense-plan-act approach to
mobile robot control appears in [Stentz90].

An alternative approach spearheaded by Brooks
advocates decomposition of the robot control problem
into special-purpose task-achieving modules (often called
behaviors) rather than into general-purpose functional
modules [Brooks86]. One of the interesting results of
this work is that useful behaviors can be built out of very
simple computations with very little internal state. (This
result is often mistakenly believed to imply that reactive
control is one of the tenets of the behavior-based
approach. Behavior-based control makes reactive control
possible, but it does not mandate it.)

A number of researchers have described systems which
integrate these two approaches (e.g. [Connell91],
[Kaelbling88], [Soldo90], [Arkin90], [Georgeff87]), or
which start with one approach and try to push its
capabilities towards that of the other (e.g. [Mataric90],
[Simmons90]). Most of these systems are homogeneous,
that is, they use basically the same computational
structure throughout. ([Connell91] is a notable
exception.)

Overview: This paper introduces ATLANTIS, a
heterogeneous, asynchronous architecture for controlling
mobile robots which combines a traditional AI planner
with a reactive (not necessarily behavior-based) control
mechanism. The next section describes the theory behind
the approach. Section 3 describes the architecture.
Section 4 describes experiments using the architecture to

control real-world and simulated real-world mobile robots
performing multiple tasks in real time in noisy,
unpredictable environments. Section 5 summarizes,
presents conclusions, and suggests directions for future
research.

This paper is constrained by space limits to be
somewhat superficial. For more complete technical
details see [Gat91a], and forthcoming papers.

2. Activities and Decisions
The ATLANTIS architecture is based on an action

model which is different from most traditional AI
systems. This section presents a brief review of this
model. For a more complete discussion see [Gat91a].

A majority of past work in AI on robot control
architectures and planning systems is based fundamentally
on a state-action model. This model is based on the idea
that the temporal evolution of the configuration of a
system (or an environment) can be described as a sequence
of discrete states. One state is transformed into a
subsequent state by the performance of an action. The
word action is variously used to denote both the physical
action as well as a computational structure which
represents the physical action. The latter is sometimes
called an operator, a term which we will adopt here to
avoid ambiguity.

According to the classical paradigm, an action is
produced by executing an operator. In order to distinguish
between this technical notion of action as the physical
activity produced by the execution of an operator, and the
idea of physical activity in general, we will capitalize the
former. Thus, executing an operator produces an Action,
but an action might be produced in other ways.

There is a very close correspondence between Actions
and operators, which is one reason the terms are
sometimes used interchangeably. The process of
execution is atomic, resulting in a strict one-to-one
correspondence between operators an Actions. This
structure facilitates analysis, but makes it difficult to
model simultaneous, interleaving, or overlapping actions.
It also makes it impossible to model a process where the
execution of an atomic action is abandoned in the middle
in response to a contingency.

ATLANTIS is based on a continuous action model
similar to those described in [Miller84], [Hogge88], and
[Dean88]. The ATLANTIS action model is based on
operators whose execution consumes negligible time, and
thus do not themselves bring about changes in the world
but instead initiate processes which then cause change.
These processes are called activities, and the operators
which initiate (and terminate) them are called decisions.

A decision may initiate an activity which contains
computational processes which initiate other activities. If
we assume that there are no circularities in this network
of initiations then we may classify activities into a
hierarchy. High-level activities contain computational

processes which initiate low-level activities. The
hierarchy bottoms out in primitive activities, reactive
sensorimotor processes which contain no decision-making
computations.

Because there is no strict correspondence between
decisions and changes in the world, an activity-based
model of action is more difficult to analyze than a state-
action model. Such an analysis is beyond the scope of
this paper. Instead, we will use the activity model as an
engineering tool to help us organize the computations
required to produce robust behavior in our robots. The
key observation is that activities consist of potentially
overlapping sequences of primitive (physical) activities
and computational activities. The results of the
computations are used to guide the sequencing of
primitives. Thus, to control a mobile robot we need three
things: a control mechanism for controlling primitive
activities, a computational mechanism for performing
decision-making computations, and a sequencing system
to control the interactions between the two. The next
section describes such a system.

3. An Architecture for Navigation
This section briefly describes ATLANTIS, a

heterogeneous asynchronous architecture for controlling
mobile robots based on the activity model of action
described in section 2. ATLANTIS consists of three
components. The controller is a reactive control
mechanism which controls primitive activities, i.e.
activities with no decision-making computations. The
sequencer is a special-purpose operating system which
controls the initiation and termination of primitive
activities, and of time-consuming deliberative
computations like planning and world modelling which
are performed in the deliberator.

3 .1 The controller: This component is
responsible for controlling primitive activities, that is,
activities which are (mostly) reactive sensorimotor
processes. It is possible to design the controller for a
given application using nothing but classical control
theory. However, in many cases control theory cannot be
applied directly to the problem of controlling autonomous
mobile robots because of the difficulty in constructing an
adequate mathematical model of the environment. In such
cases it is necessary to provide a framework wherein an
appropriate control algorithm can be effectively engineered
and empirically verified.

There are a great many issues which must be addressed
in the design of such a system, not the least of which are
control-theoretical issues. For now we shall lay these
aside, concentrating instead on the computational
organization of the system that allows a designer to
conveniently engineer systems that do the right thing.
The sorts of transfer functions required to control reactive
robots tend to be highly nonlinear, of high dimension,
and often discontinuous. The design of the system must
be such that we can easily describe the functions we need

and, having defined them, actually implement them in a
way that lets them be connected to actual hardware.

To support these requirements we have designed a new
programming language called ALFA (A Language For
Action) [Gat91b]. ALFA is similar in spirit to REX
[Kaelbling87], but the sorts of abstractions the two
languages provide are quite different. ALFA programs
consist of computational modules which are connected to
each other and to the outside world by means of
communications channels. Both the computations
performed and their interconnections are specified within
module definitions, allowing modules to be inserted and
removed without having to restructure the
communications network. ALFA provides both dataflow
and state-machine computational models. It has a clean
syntax and a realistic uniform interface to external
hardware. ALFA is currently compiled into uniprocessor
code, but the semantics of the language are such that it
could be compiled onto a parallel processor or even analog
hardware.

3 .2 The sequencer: This component is
responsible for controlling sequences of primitive
activities and deliberative computations. Controlling
sequences is difficult primarily because the sequencer must
be able to deal effectively with unexpected failures. This
requires the careful maintenance of a great deal of internal
state information because the sequencer must be able to
remember what actions have been taken in the past in
order to decide what action should be taken now.

The fundamental design principle underlying the
sequencer is the notion of cognizant failure [Firby89]. A
cognizant failure is a failure which the system can detect
somehow. Rather than design algorithms which never
fail, we instead use algorithms which (almost) never fail
to detect a failure. There are two reasons for doing this.
First, it is much easier to design navigation algorithms
which fail cognizantly than ones which never fail.
Second, if a failure is detected then corrective action can
be taken to recover from that failure. Thus, algorithms
with high failure rates can be combined into an algorithm
whose overall failure rate is quite low provided that the
failures are cognizant failures [Howe91].

The sequencer initiates and terminates primitive
activities by activating and deactivating sets of modules in
the controller. In addition, the sequencer can send
parameters to the controller by means of channels. The
progress of a primitive activity is monitored by
examining the values of channels provided for this
purpose.

The sequencer is modelled after Firby's Reactive
Action Package (RAP) system. The system maintains a
task queue, which is simply a list of tasks that the system
must perform. Each task contains a list of methods for
performing that task, together with annotations describing
under what circumstances each method is applicable. A
method is either a primitive action or a list of sub-tasks
to be installed onto the task queue. The system works by

successively expanding tasks on the queue until they
either finish or fail. When a task fails, and alternate
method is tried. (cf. [Simmons90], [Noriels90]).

The main difference between the original RAP system
and the ATLANTIS sequencer is that the latter controls
activities rather than atomic actions. This requires a few
modifications to the original RAP system. First, the
system must insure that two activities which interfere
with each other are not enabled simultaneously. This is
accomplished by attaching to each activity a list of
resources that the activity requires and using a set of
semaphores to prevent conflicts. Second, if a primitive
activity must be interrupted (for example, to take care of
some unexpected contingency) then the system must
insure that the interrupted activity is properly terminated
so that the modules which control that activity are
disabled and any resources used by that activity are
relinquished. The solution to this problem is to provide a
mechanism similar to a LISP unwind-protect which
allows an interrupted process to execute some clean-up
procedures before relinquishing control.

3 .3 The deliberator: This component is
responsible for performing time-consuming
computational tasks such as planning and maintaining
world models. The deliberator performs computations
under the control of the sequencer - all deliberative
computations are initiated (and may be terminated before
completion) by the sequencer. This allows the sequencer
to direct scarce computational resources to the task at
hand. Results of deliberative computations are placed in a
database which can be accessed by the sequencer. The
deliberator has no restrictions on its computational
structure except that the sequencer must be able to initiate
and terminate its computations. It typically consists of a
set of LISP programs implementing traditional AI
algorithms. This is a central feature of the system. The
function of the sequencer and controller is to provide an
interface which connects to physical sensors and actuators
on one end, and to classical AI algorithms implemented in
traditional ways on the other.

The following interesting question now arises: how
does a planner based on a traditional AI state-action model
interface with a control mechanism based on a continuous
activity model? It turns out that this interface is quite
straightforward. Because the output of the planner is used
only as advice by the sequencer, it doesn't matter at all
what the planner's internal representation is. The only
requirement is that the output of the planner contains
some information which the sequencer can effectively use.
ATLANTIS can be considered an implementation of Agre
and Chapman's theory of plans-as-communications (or
plans-as-advice) [Agre90]. A concrete example is
described in section 4.

3 .4 Design methodology: ATLANTIS
advocates a bottom-up design methodology (cf.
[Simmons90]). Primitive activities are designed first,
keeping in mind that they must be designed to fail

cognizantly. The primitives are then used as fundamental
building blocks for the construction of task schemas for
the sequencer task library. Finally, deliberative
computations are designed to support the sequencer in
making choices among multiple tasks, task methods, or
in supplying task method parameters.

Although there are no restrictions on the
computational structure of the deliberator, there is a caveat
concerning the semantics of its computations.
Deliberative computations by definition are time-
consuming and maintain internal state information which
contains implicit predictions about the world. Thus it is
critical that the information content of the internal state
pertain to predictable aspects of the environment. One
way to do this is to insure that all deliberative
computations are performed at a high level of abstraction
where unpredictable aspects of the environment are
abstracted away to be dealt with at runtime by the rest of
the architecture.

4 Experiments
ALFA, and the ATLANTIS architecture and design

methodology have been implemented on a variety of real
robots operating in both indoor and outdoor
environments. ALFA has been used to control Tooth, an
extremely reliable indoor object-collecting robot [Gat91c].
The language has also been used to program the JPL
outdoor microrover testbed Rocky III, the only example
known to the author of an autonomous outdoor robot
which collects and returns samples [Miller91]. A
significant result of this work was that the control
structures for these two robots was very similar,
indicating that the abstractions used to program them may
be more widely applicable. ALFA and a simple sequencer
were also used to control an indoor robot performing a
complex navigation task using very simple sensors
[Gat91d]. (cf. [Mataric90], [Connell91]).

The ATLANTIS architecture has been used to control
Robbie, the JPL Mars rover testbed. Robbie is a large
outdoor testbed whose primary sensor is a pair of stereo
cameras. A trace of a typical experiment is shown in
figure 1. The robot's path is shown as a solid black line
starting at the right. The light polygons are the areas
scanned by the robot's stereo vision cameras. The shaded
circles are obstacles detected by the robot during the
traverse. The total length of the path is about forty
meters. The robot moved at about two meters per
minute. (The robot has now been retrofitted with a new
drive mechanism which should significantly improve this
performance.)

The sequencer in this experiment coordinated four
active tasks running concurrently during the traverse:
controlling the vehicle's direction, controlling the aiming
of the stereo camera, and allocating processor time to the
stereo processing and planning tasks running in the
deliberator. The navigation task used an algorithm based
on navigation templates (NaTs) [Slack90] to avoid

obstacles. This algorithm used a symbolic map
constructed by the vision system, together with the
current strategic plan constructed by the deliberator, to
quickly calculate a preferred direction of travel from the
robot's current location about three times a minute.

The robot was given three goals and no advance
knowledge of the environment whatsoever. The robot
initially planned to achieve goal B first, then goal A, then
goal C. On the way to the second goal, however, it
acquired new obstacle data which indicated that goal C
would be easier to achieve next. The deliberator, running
asynchronously, advised the sequencer to temporarily
abandon goal A in favor of goal C.

Goal A

Goal B

Goal C

Figure 1: An outdoor robot performing a
complex navigation task.

Simulation results: In order to facilitate
experimentation, a sophisticated simulation of the Robbie
robot was constructed. The simulation operates in real
time, and includes an accurate kinematic simulation of the
robot, as well as a sensor model with tunable noise
parameters which can be adjusted to yield performance
very close to the real robot. (In most of our simulator
experiments we adjusted the noise parameters to give
significantly worse performance than the real robot.)

The performance of the simulator was verified by
reproducing the results obtained on the real robot. (See
figure 2.) The code controlling the simulated robot was
identical to the code which controlled the real robot. The
world model built up by the real robot in the outdoor
experiment was used as the simulator's internal world
model (shown as shaded circles in the figure). The
simulated robot had no direct access to this model, but
could access it only through the simulated vision system.
The obstacles actually detected by the robot are shown as
pairs of hollow circles (representing uncertainty ranges on
the size of the obstacle).

The results of the simulated run are qualitatively
identical to the experiment on the real robot. The small
quantitative differences are due to the random differences in
the sensed world model due to sensor noise. While a
single experiment does not warrant sweeping conclusions,
these results do indicate that the performance of the
simulator is not totally out of step with reality.
(Extensive informal experience with the simulator also
indicates that its performance is comparable to the real
robot.)

Goal A

Goal B

Goal C

Figure 2: A simulated recreation of the
outdoor navigation experiment.

Multiple tasks: The simulator was used to perform
an extensive series of experiments in an augmented
environment far more complex than that available in
reality. (See figure 3.) First, a set of random obstacle
fields were generated with obstacle densities far higher
than those on our actual test course (shown as shaded
rectangles in the figure). Second, the noise parameters of
the simulated vision system were set to produce data
which were sparser and noisier by an order of magnitude
than on the real robot. Third, the environment was
augmented with a set of simulated martians which roamed
about in semi-random trajectories (shown as M-shaped
objects). Fourth, a set of sample sites and a home base
were added to the world model (labelled "REDSOURCE",
"HOME-BASE", etc.).

The robot was given three tasks in this augmented
environment: to photograph as many martians as
possible, to collect and deliver samples from the sample
sites to various destinations according to orders which
were given to the robot at runtime (an example of a meta-
goal), and to keep itself refueled by visiting home-base
periodically.

To support this experiment, a task planner was written
based on the work of Miller [Miller84]. The planner is a
simple linear planner which performs a forward beam-
search through a space of world states. The search is kept
to manageable size through a set of powerful heuristics.
The planner can deal with issues of limited resources,
deadlines, and travel time. This planner was implemented
entirely in Lisp.

HOM E-BASE

GREENSOURCE

BLUESOUR CE

REDSOURCE

Figure 3: A complex delivery task.

To use the plan, the sequencer looked at the current
first step which could be one of four things: collect or
deliver a sample, refuel, photograph a martian, or go to a
new destination. If the first step was to refuel or collect
or deliver a sample, this step was simply executed as if it
were a classical operator (since the simulator has no real-
time model of manipulation or refueling). However, if
the next step of the plan was to photograph a martian or
to go to a new location, the sequencer extracted the target
martian or the goal location and initiated an activity to
aim the camera in the direction of the martian, or to go to
that new location. Because the code to control navigation
and camera aiming had already been developed and
debugged, the information from the planner could be
seamlessly incorporated as inputs to parameters in the
code for controlling those activities. Furthermore,
because the planner interfaced to the rest of the system
only through previously designated inputs, there was a
high degree of confidence that the combined system would
work properly without modification to existing code.
(This was confirmed by a subsequent experiment - see the
last paragraph of this section.)

The rock-collecting martian-photographing system has
logged over twenty hours of runtime, and over thirty
kilometers of (simulated) traversed terrain. The longest

single run to date lasted eight hours, and we have no
reason to believe that the system would not run
indefinitely. Two snapshots of the system in action are
shown in figure 3 and 4.

HOM E-BASE

GREENSOURCE

BLUESOURCE

RED SOURCE

Figure 4: Recovering from failure.

The snapshot shown in figure 3 is particularly
interesting because it shows an example of the planner
interacting with the rest of the system. In this case the
robot's goals were to collect a sample from each of the
three sample sites and return them to the home base. The
robot begins by collecting green and blue rocks.
However, before collecting red rocks the robot returns to
the home base. This is because the task planner, which
had been running asynchronously, determined that there
was not enough fuel to collect red rocks and safely return
to the home base. Thus, the planner advised the sequencer
to go back to refuel first. On the way, the robot
encounters an obstacle blocking its intended route which
was not detected by the vision system due to noise,
forcing a detour. (A more dramatic example of this is
shown in figure 4.) All of this is completely transparent
to the task planner.

To demonstrate the ease with which different sorts of
strategic planners could be incorporated into the
architecture, a different planner (a topological path
planner) was written and installed. The resulting system
worked with no modifications to previously existing code.
Details of this experiment can be found in [Gat91a].

5. Comparison to Other Work
In this section we contrast ATLANTIS with other

current work. The purpose of these comparisons is to
clarify the operation of ATLANTIS, and is not a
comprehensive review of the literature. Only those
architectures which are most similar to ATLANTIS are
reviewed here.

One of the most similar architectures to ATLANTIS is
Connell's recently introduced SSS architecture
[Connell91]. SSS was developed independently of
ATLANTIS at about the same time, and they share many
of the same motivations and features. The primary
differences between the two are: 1) ATLANTIS provides a
more complete framework for engineering the controller,
2) The middle layer of SSS is based on Brooks'
subsumption architecture whereas the sequencer in
ATLANTIS is based on Firby's RAP system, and perhaps
most important, 3) the symbolic layer of SSS is actually
in the control loop, whereas the deliberator in ATLANTIS
merely provides advice to the sequencer. Putting the
symbolic layer in the control loop can adversely affect the
real-time response of the system, requiring a special
mechanism in SSS (the contingency table) to help
circumvent the symbolic layer when speed is critical. In
ATLANTIS, because the deliberator is not directly in the
control loop its performance in no way affects the
system's ability to respond to contingencies with
dispatch. In fact, the deliberator can be completely
removed and the resulting decapitated architecture is still
quite capable of controlling a robot [Gat91d]. In this
way, ATLANTIS achieves one the original aims of
Brooks' subsumption architecture, namely, that the
system should degrade gracefully with the failure of
higher-level components.

ATLANTIS is the direct intellectual descendent of a
complete control architecture described in the original
work on RAPs [Firby89]. The main differences between
ATLANTIS and the RAP architecture is that in the latter
control flows top-down from the symbolic planner which
installs tasks in the task queue (although the possibility
of controlling symbolic computations by the sequencer is
also suggested). The original RAP system also assumed
a discrete action model and an optimistic sensor interface.
It is interesting to note that most of the ideas in the RAP
work turn out to extend with little or no modification to
real-world sensors and continuous actuations. An
architecture developed Bonasso is also very similar to
ATLANTIS and shares many of its intellectual roots
[Bonasso92].

6. Conclusions
We have shown that classical AI planning systems can

be usefully embedded into a control mechanism for
autonomous mobile robots operating in real world
environments. Special compilation and implementation
techniques are not required. Instead, a classical planner
should be operated asynchronously in conjunction with a
reactive control mechanism, and the planner's output
should be used to guide the robot's actions but not to
control them directly. This work can be viewed as an
implementation of Agre and Chapman's plans-as-
communications theory.

We have implemented a control architecture called
ATLANTIS according to these principles on a variety of

real-world and simulated real-world robots operating in
both indoor and outdoor environments. We have
demonstrated that ATLANTIS can control a robot
pursuing multiple goals in real time in a noisy, partially
unpredictable environment. The robot's performance is
reliable, task-directed and taskable, and reactive to
contingencies.

We draw the following general conclusions:

1 . Robot control architectures should be
heterogeneous. Much effort has been expended trying
to design architectures which perform strategic planning
using the same computational structure which they use to
do low-level motor control. There seems to be little to be
gained by this. Using different computational
mechanisms to perform different tasks is straightforward
and it works.

2 . Robot control architectures should be
asynchronous. Slow computations should be
performed in parallel with fast ones to allow fast reaction
to contingencies. A continuous rather than a discrete
action model should be used to allow actions to overlap or
to be terminated before completing in response to
unexpected situations.

3 . Classical planning, abstraction, and
centralized world models are at least useful, if
not necessary, in real-world autonomous
mobile robots. While it is certainly possible to
implement planners and world models in non-classical or
distributed ways, it is not clear that there are advantages in
doing so over using established, classical techniques.
Abstraction can be a powerful tool for dealing with
unpredictable aspects of the environment, and need not
introduce large control errors if the plans-as-advice model
is followed.

4 . Plans should be used to guide, not
control, action. This is the view put forth by Agre
and Chapman. We consider this work experimental
evidence in support of their position.

Finally, we make one unsubstantiated conjecture:

5 . Robot control systems should be
designed bottom-up. This is a software engineering
issue, and can probably be verified only with much more
experience designing mobile robot control systems. (cf.
[Simmons90])

Acknowledgements: This research was performed
at the Jet Propulsion Laboratory, California Institute of
Technology under a contract with the National
Aeronautics and Space Administration. Many of the ideas
in this paper grew out of discussions with Rodney
Brooks, Jim Firby, Marc Slack, Paul Viola and David
Miller. Portions of the control software for Robbie were
written by Jim Firby, Marc Slack, Brian Cooper, Tam
Nguyen and Larry Matthies. Portions of the simulator
software were written by Jim Firby and Marc Slack.

References
[Agre90] Phil Agre, "What are Plans For?", Robotics and Autonomous

Systems , vol. 6, pp. 17-34, 1990.
[Arkin90] Ronald C. Arkin, "Integrating Behavioral, Perceptual and

World Knowledge in Reactive Navigation," Robotics and
Autonomous Systems , vol. 6, pp. 105-122, 1990.

[Bonasso92] R. Peter Bonasso, "Using Parallel Program Specifications
For Reactive Control of Underwater Vehicles," to appear, Journal
of Applied Intelligence, Kluwer Academic Publishers, Norwell ,
MA, June 1992.

[Brooks86] Rodney A. Brooks, "A Robust Layered Control System for
a Mobile Robot", IEEE Journal on Robotics and Automation, vol
RA-2, no. 1, March 1986.

[Connell91] Jonathan Connell, "SSS: A Hybrid Architecture Applied to
Robot Navigation," unpublished manuscript.

[Dean88] Tom Dean, R. James Firby and, David P. Miller,
Hierarchical Planning with Deadlines and Resources,
Computational Intelligence 4(4), 1988.

[Firby89] R. James Firby, Adaptive Execution in Dynamic Domains,
Ph.D. thesis, Yale University, 1989.

[Gat91a] Erann Gat, "Reliable Goal-directed Reactive Control for
Real-world Autonomous Mobile Robots", Ph.D. Thesis, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia.

[Gat91b] Erann Gat, "ALFA: A Language for Programming Reactive
Robotic Control Systems",IEEE Conference on Robotics and
Automation, 1991.

[Gat91c] Erann Gat and David P. Miller, "Modular, Low-computation
Robot Control for Object Acquisition and Retrieval," unpublished
manuscript.

[Gat91d] Erann Gat, "Low-computation Sensor-driven Control for
Task-directed Navigation," IEEE Conference on Robotics and
Automation, 1991.

[Georgeff87] Michael Georgeff and Amy Lanskey, "Reactive
Reasoning and Planning", Proceedings of AAAI-87.

[Hogge88] John Hogge, "Prevention Techniques for a Temporal
Planner," Proceedings of AAA88.

[Howe91] Adele E. Howe, "Failure Recovery: A Model and
Experiments," Proceedings of AAAI91.

[Kaelbling87] Leslie Pack Kaelbling, "REX: A Symbolic Language
for the Design and Parallel Implementation of Embedded Systems,"
Proceedings of the AIAA conference on Computers in Aerospace,
1987.

[Kaelbling88] Leslie Pack Kaelbling, "Goals as Parallel Program
Specifications", Proceedings of AAAI-88.

[Mataric90] Maja Mataric, "A Distributed Model for Mobile Robot
Environment Learning and Navigation", Technical Report 1228,
MIT AI Laboratory, 1990.

[Miller84] David P. Miller, "Planning by Search Through Simulations",
Technical Report YALEU/CSD/RR423, Yale University, 1984.

[Miller91] David P. Miller, et al., "Reactive Navigation through Rough
Terrain: Experimental Results," Proceedings of AAAI92.

[Noreils90] Fabrice Noreils, "Integrating Error Recovery in a Mobile
Robot Control System," IEEE International Conference on Robotics
and Automation, 1990.

[Simmons90] Reid Simmons, "An Architecture for Coordinating
Planning, Sensing and Action," Proceedings of the DARPA
Workshop on Innovative Approaches to Planning, Scheduling, and
Control, 1990.

[Slack90] Marc G. Slack, "Situationally Driven Local Navigation for
Mobile Robots", JPL Publication 90-17, California Institute of
Technology Jet Propulsion Laboratory, April 1990.

[Soldo90] Monnett Soldo, "Reactive and Preplanned Control in a
Mobile Robot," IEEE International Conference on Robotics and
Automation, 1990.

[Stentz90] Anthony Stentz, "The Navlab System for Mobile Robot
Navigation", Ph.D. Thesis, Carnegie Mellon University School of
Computer Science, 1990.

[Wilcox92] Biran Wilcox, et al., "Robotic Vehicles for Planetary
Exploration", IEEE International Conference on Robotics and
Automation, 1992.

