ESL: A Language for Supporting Robust Plan Execution
in Embedded Autonomous Agents

Erann Gat
Jet Propulsion Laboratory
Cdlifornia Ingtitute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109
gat@jpl.nasa.gov

Abstract—ESL (Execution Support Language) [5] isa
language for encoding execution knowledge in embedded
autonomous agents. Itissimilar in spirit to RAPs[2]
and RPL [7], and RS [6], and its design owes much to
these systems. Unlike its predecessors, ESL aims for a
more utilitarian point in the design space. ESL was
designed primarily to be a powerful and easy-to-use tool,
not to serve as a representation for automated reasoning
or formal analysis (although nothing precludes its use for
these purposes). ESL consists of several sets of loosely
coupled features that can be composed in arbitrary ways.
Itiscurrently implemented as a set of extensions to
Common Lisp, and is being used to build the executive
component of a control architecture for an autonomous
spacecraft [8].

1. INTRODUCTION

ESL (Execution Support Language) is a language for
encoding execution knowledge in embedded autonomous
agents. It isdesigned to be the implementation substrate
for the sequencing component of athree-layer architecture
such as 3T [1] or ATLANTIS[3]. The sequencer in such
an architecture coordinates the actions of a reactive
controller, which controls the agent's actions, and a
ddiberative component, which generates plans and
performs other high-level computations. The sequencer
must be able to respond quickly to events while bringing
potentially large quantities of information — both
knowledge and run-time data— to bear on its decisions.
An implementation substrate for such a system should
also be able to deal with avariety of different strategies
for assigning responsibilities to the various layers, from
mostly reactive strategies, to ones where the planner is
the prime mover.

ESL issimilar in spirit to RAPs [2], RPL [7], and RS
[6], and its design owes much to these systems. Unlike
its predecessors, ESL aims for a more utilitarian point in
the design space. ESL was designed primarily to be a
powerful, flexible, and easy-to-use tool, not to serve asa
representation for automated reasoning or formal analysis
(although nothing precludes its use for these purposes).

ESL consists of several sets of loosely coupled features
that can be composed in arbitrary ways. It is currently
implemented as a set of extensions to Common Lisp,
and is being used to build the executive component of a
control architecture for an autonomous spacecraft [4,8].

The following sections provide a brief overview of most
of the major feature sets in ESL. For a complete
(though terse) description of the language see the ESL
User's Guide [5].

2. CONTINGENCY HANDLING

The contingency-handling constructs of ESL are based on
the concept of cognizant failure , which is a design
philosophy that states that systems should be designed to
detect failures when they occur so that the system can
respond appropriately. This approach presumes that the
multiple possible outcomes of actions are easily
categorized as success or failure. (It also assumes that
failures areinevitable.) This approach can be contrasted
with approaches such as universal plans [9] where
multiple outcomes are all treated homogeneously. Our
experience has been that the cognizant-failure approach
providesa good reflection of human intuitions about
agent actions.

Basic Constructs

The two central contingency-handling constructs of ESL
are ameans of signaling that afailure has occurred, and a
means of specifying arecovery procedure for a particular
type of failure. These constructs are:

(FAIL cause . arguments)

(WITH-RECOVERY-PROCEDURES
(&rest recovery-clauses)
&body body)

The FAIL construct signals that a failure has occurred,
and WITH-RECOVERY-PROCEDURES sets up
recovery procedures for failures. A call to FAIL is
equivalent to a call to an active recovery procedure (i.e.

one whose restarts limit has not been reached). Recovery
procedures have dynamic scope.

The syntax for arecovery clauseis:

(cause &key retries . body)

or

((cause . args) &key retries . body)

In the first case any arguments in a FAIL statement
which transfers control to the recovery procedure are
discarded. Inthe second case arguments are lexicaly
bound to ARGS. Excess arguments are discarded, and
missing arguments default to nil. The optional keyword
argument RETRIES specifies the maximum number of
times that particular recovery procedure can be invoked
during the current dynamic scope of the WITH-
RECOVERY -PROCEDURES form. RETRIES defaults
to 1. The value of RETRIES can be the keyword
!INFINITE, with the obvious results.

Within the BODY of arecovery procedure the special
form (RETRY) does a non-local transfer of control (a
throw) to the BODY of the WITH-RECOVERY-
PROCEDURES form of which the recovery procedureis
a part, and the specia form (ABORT &optional
result) causes RESULT to be immediately returned
from the WITH-RECOVERY -PROCEDURES form.

A recovery procedure for cause :GENERAL-FAILURE is
applicable to afailure of any cause. It is possibleto
generalize this mechanism to a full user-defined hierarchy
of failure classes, but so far we have not found this to be
necessary.

The scope of a set of recovery procedures is mutually
recursive in the manner of the Lisp LABELS construct,
or Scheme LETREC. That is, the scope of arecovery
procedure includes the recovery procedure itself, and all
other recovery procedures that are part of the same
WITH-RECOVERY -PROCEDURES form. Failures are
only propagated upwards when no recovery procedures for
a given falure exist within the current WITH-
RECOVERY-PROCEDURES form, or when al the
retries for that failure have been exhausted. For example,
the following code will print FOO BAZ FOO BAZ, and
then fail with cause :FOO.

(with-recovery-procedures
((:foo :retries 2

(print "foo) (fail :baz))
(:baz :retries 2
(print "baz) (fail :foo)))

(fail :foo))

Cleanup Procedures

It is often desirable to insure that certain actions get
taken "if all else fails" and the execution thread exits a
certain dynamic context with afailure. For example, one
might want to insure that all actuators are shut down if a
certain procedure fails and the available recovery
procedures can't ded with the situation. Such a
procedure is called a cleanup procedure, and is provided in
ESL using the following construct:

(WITH-CLEANUP-PROCEDURE cleanup
&body body)

This construct executes BODY, but if BODY fails,
CLEANUP is executed before the failure is propagated
out of the WITH-CLEANUP-PROCEDURE form. This
construct is similar to the Lisp UNWIND-PROTECT
construct except that the cleanup procedure is only
executed if BODY fails. (Because ESL isimplemented
on top of Common Lisp, UNWIND-PROTECT is also
available for implementing unconditiona cleanup
procedures.)

Examples

To illustrate the use of ESL's contingency handling
constructs, consider awidget that is operated with the
primitive call OPERATE-WIDGET. This call fails
cognizantly is the widget is broken. We can break the
widget by calling BREAK-WIDGET, which takes an
optional argument to specify how badly to break the
widget. Thereisalso arepair primitive, ATTEMPT-
WIDGET-FIX, which will fix the widget if passed an
argument that matches the current widget state. The
following execution trace illustrates the basic principles
of widget physics:

? (operate-widget)

OPERATING WIDGET SUCCESSFULLY.
NIL

? (break-widget)
:BROKEN

? (operate-widget)
Failure :WIDGET-BROKEN,
available.

Aborted

? (attempt-widget-fix
Widget is fixed.

NIL

? (operate-widget)
OPERATING WIDGET SUCCESSFULLY.
NIL

? (break-widget
:SEVERELY-BROKEN
? (operate-widget)

no recovery

:broken)

:severely-broken)

Failure :WIDGET-BROKEN,

available.

Aborted

? (attempt-widget-fix :-broken)

Widget fix didn"t work.

NIL

? (operate-widget)

Failure :WIDGET-BROKEN,

available.

Aborted

? (attempt-widget-fix
:severely-broken)

Widget is fixed.

NIL

? (operate-widget)

OPERATING WIDGET SUCCESSFULLY.

NIL
?

no recovery

no recovery

Notice that attempting to operate the widget in a broken
state results in a cognizant failure. Now consider the
following code:

(defun recovery-demo-1 ()
(with-recovery-procedures
((:widget-broken

(attempt-widget-fix :broken)
(retry))
(:widget-broken
(attempt-widget-Ffix
:severely-broken)
(retry))
(:widget-broken :retries 3

(attempt-widget-fix
:weird-state)

(retry)))
(operate-widget)))

This code provides three different recovery procedures for
recovering from widget failures. The operation of this
code isillustrated by the following execution trace:

? (recovery-demo-1)

; If the widget is OK nothing special
happens

OPERATING WIDGET SUCCESSFULLY.

NIL

? (break-widget)

:BROKEN

? (recovery-demo-1)

; 1T the widget is broken it now gets

fixed
Failure :-WIDGET-BROKEN, recovery
available. (No retries)

Widget is fixed.
OPERATING WIDGET SUCCESSFULLY.
NIL

? (break-widget
:SEVERELY-BROKEN
? (recovery-demo-1)
; First attempt to recover from a
simple broken state
Failure :WIDGET-BROKEN,
available. (No retries)
Widget fix didn"t work.
; Now try the second recovery
procedure
Failure :WIDGET-BROKEN,
available. (No retries)
Widget is fixed.
OPERATING WIDGET SUCCESSFULLY.
NIL
? (break-widget :irrecoverably-broken)
- IRRECOVERABLY-BROKEN
? (recovery-demo-1)

None of the recovery procedures will
work, but the third
; one gets three retries before giving
up -
Failure :WIDGET-BROKEN,
available. (No retries)
Widget fix didn"t work.
Failure :WIDGET-BROKEN,
available. (No retries)
Widget fix didn"t work.
Failure :WIDGET-BROKEN,
available. (2 retries)
Widget fix didn"t work.
Failure :WIDGET-BROKEN,
available. (1 retry)
Widget fix didn"t work.
Failure :WIDGET-BROKEN,
available. (No retries)
Widget fix didn"t work.
Failure :WIDGET-BROKEN,
available.

Aborted
?

:severely-broken)

recovery

recovery

recovery

recovery

recovery

recovery

recovery

no recovery

3. GOAL ACHIEVEMENT

Decoupling of achievement conditions and the methods
of achieving those conditions is provided by the
ACHIEVE and TO-ACHIEVE constructs. The syntax
for these constructsis:

(TO-ACHIEVE condition
(ACHIEVE condition)

methods)

Each METHOD isa COND clause. For example:

(defun widget-o0k? (O

(eq *widget-status* :0k))

(to-achieve (widget-o0ok?)
((eq *widget-status*
(attempt-widget-fix
((eq *widget-status*
:severely-broken)
(attempt-widget-Ffix
:severely-broken)))

:broken)
:broken))

The TO-ACHIEVE construct is somewhat analogous to
the RAP METHOD clause in that it associates
alternative methods with conditions under which those
methods are appropriate. In this case there are two
methods, one for the broken state and another for the
severely broken state. The operation of this code is
illustrated in the following execution trace, beginning
with an unbroken widget:

? (operate-widget)

OPERATING WIDGET SUCCESSFULLY.

NIL

? (achieve (widget-o0k?))

(WIDGET-0K?) achieved.

needed.)

NIL

? (break-widget :broken)

:BROKEN

? (achieve (widget-o0k?))

Attempting to achieve (WIDGET-0K?)

Widget is fixed.

(WIDGET-0K?) achieved.

T

? (break-widget
sirrecoverably-broken)

- IRRECOVERABLY-BROKEN

? (achieve (widget-o0k?))

Attempting to achieve (WIDGET-0K?)

Failure :NO-APPLICABLE-METHOD, no

recovery available.

Aborted
?

(No action

4, TASK MANAGEMENT

Events

ESL supports multiple concurrent tasks. Task
synchronization is provided by a data object type called
an event. A task can wait for an event, at which point
that task will block until another task signals that event.
The constructs are straightforward:

(WAIT-FOR-EVENTS events
&optional test)
(SIGNAL event &rest args)

A task can wait on multiple events simultaneously; it
becomes unblocked when any of those events ae
signaled. Also, multiple tasks can simultaneously wait
onone event. When that event is signaled, all the
waiting tasks are unblocked simultaneously. (Which
task actually starts running first depends on the task
scheduler.)

If arguments are passed to SIGNAL-EVENT those
arguments are returned as multiple values from the
corresponding WAIT-FOR-EVENT. If WAIT-FOR-
EVENTS s provided an optional TEST argument, then
the task is not unblocked unless the arguments passed to
SIGNAL answer trueto TEST (i.e. TEST returns true
when called on those arguments).

Checkpoints

ESL tasks are themselves first-class data objects which
inherit from event. Thus, tasks can be waited-for and
signaled. However, because tasks have alinear execution
thread it is desirable to slightly modify the semantics of
an event associated with atask. Normal events do not
record signals; atask waiting on an event blocks until
the next time the event is signaled. However, a task
waiting for another task should not block if the other
task has dready passed the relevant point in the
execution thread. (For example, if task T1 starts waiting
for task T2 to end after T2 has already ended it should not
block.) Thus, ESL provides an additional mechanism
caled a checkpoint for signaling task-related events.
Signaling a checkpoint is the same as signaling an
event, except that arecord is kept of the event having
happened. When a checkpoint is waited-for, the record of
past signals is checked first. In order to disambiguate
checkpoints, an identifying argument is required. Thus
we have the following constructs:

(CHECKPOINT-WAIT task id)
(CHECKPOINT id)

CHECKPOINT-WAIT waits until checkpoint ID has
been signaled by task TASK. CHECKPOINT signals
checkpoint ID in the current task. Thereis aprivileged
identifier for signaling a checkpoint associated with the
end of atask. This checkpoint isautomatically signaled
by atask when it finishes. To wait for this privileged
identifier thereis an additional construct, WAIT-FOR-
TASK, which is simply a CHECKPOINT-WAIT for the
task-end identifier.

Task Nets

ESL provides a construct called TASK-NET for setting
up aset of tasks in amutually recursive lexical context.
The syntax is:

(TASK-NET [:allow-failures]
(identifier &rest body)
(identifier &rest body)

--)

The bodiesina TASK-NET are run in paralel in a
lexical scope in which the identifiers are bound to their
corresponding tasks. The TASK-NET form itself blocks
until al its children finish. Unless the optiona
:ALLOW-FAILURES keyword is specified, if one
subtask in atask net fails the other tasks are immediately
aborted and the whole TASK-NET construct fails. There
is dso an OR-PARALLEL construct which finishes
when any one of its subtasks finishes successfully, or all
of them fail.

For example, the following code prints 1 2 3 4:

(TASK-NET

(tl (print 1)
(checkpoint :cp)
(checkpoint-wait t2
(print 3))
(checkpoint-wait tl
(print 2)
(wait-for-task t1)
(print 4)))

1cp)

(t2 cp)

Guardians

One common idiom in agent programming is having a
monitor task which checks a constraint that must be
maintained for the operation of another task. We refer to
the monitoring task as a guardian task. The relationship
between a guardian and its associated main task is
asymmetric. A constraint violation detected by the
guardian should cause a cognizant failure in the main
task, whereas termination of the main task (for any
reason) should cause the guardian to be aborted. This
asymmetric pair of tasks is created by the following
form:

(WITH-GUARDIAN guardform failform
&body body)

WITH-GUARDIAN executes BODY and GUARDFORM
in paralel. If body ends, GUARDFORM is aborted. |If
GUARDFORM ends, then the task executing body is
interrupted and forced to execute FAILFORM (which is
usually acall to FAIL).

For example, the following code operates a widget while
monitoring the widget in parallel. If MONITOR-
WIDGET returns, then OPERATE-WIDGET will fail
cognizantly.

(with-guardian (monitor-widget)
(fail :widget-failed)

(operate-widget))

5. LOGICAL DATABASE

A logica database is provided as a modular functionality
in ESL. The major constructs supporting this database
are ASSERT and RETRACT, for manipulating the
contents of the database, DB-QUERY for making
queries, and WITH-QUERY-BINDINGS, which
establishes a dynamic context for logica variable
bindings and continuations. The syntax for WITH-
QUERY-BINDINGS is:

(WITH-QUERY-BINDINGS query [:inherit-
bindings] . body)

Within a WITH-QUERY-BINDINGS form a call to
NEXT-BINDINGS calls the binding continuation, i.e. it
causes a jump to the start of BODY with the next
available bindings for QUERY. If there are no more
bindings, NEXT-BINDINGS fails with cause :NO-
MORE-BINDINGS. (If there were no bindings to begin
with the WITH-QUERY-BINDINGS form fails with
cause :NO-BINDINGS.)

The special reader syntax #?VAR accesses the logica
binding of ?VAR. The :INHERIT-BINDINGS keyword
causes the bindings in a WITH-QUERY-BINDINGS
form to be constrained by any bindings that were
established by an enclosing WITH-QUERY -BINDINGS
form.

For example, the following code will try al known
widgets until it finds one that it can operate successfully:

(with-query-bindings
"(is-a ?widget widget)
(with-recovery-procedures
(:general-failure
(next-bindings))
(operate-widget #?widget)))

7. Property Locks

One of the problems in multi-threaded agent code is
unintended interactions that occur through externa
effects. For example, one thread may turn a device on
while another thread is trying to turn it off. Initsfull
generality thisisa very complex unsolved problem.
ESL provides a mechanism for solving a constrained
version of controlling inter-task conflicts through a
mechanism called a_property lock .

A _property_isalogical assertion whose final valueis
guaranteed unique. For example, POWER-STATE isa
property, since it can be either ON or OFF, but not

both at once. (An example of alogical assertion that is
not a property is CONNECTED-TO, since a thing can
be connected to any number of other things) ESL
provides a mechanism for managing inter-task
interactions that can be expressed as properties. This
provides a simple heuristic for determining when two
tasks conflict: if two tasks attempt to achieve properties
that are identical but for their final values then a conflict
exists.

A property lock is a data structure that signals atasks's
intention to make a property take on a particular value.
Property locks are used to coordinate tasks so that they
do not try to achieve different values for a single
property at the same time.

Property lockswork as follows: A task wanting a
property P to have a certain value V expresses that
desire by SUBSCRIBING to a property lock for P. The
subscription process can have three outcomes:

1. No other task is subscribing to that lock, in which
case the subscription is successful, and the task is said
to have SNARFED the lock. (To snarf == to
successfully subscribe) — This task becomes the
OWNER of the lock.

2. Some other task is subscribing to the lock, and the
values that the two tasks want the property to have are
compatible. In this case the task snarfs the lock but
does not become the lock's owner.

3. Some other task is subscribing to the lock and the
values are incompatible. In this case the subscription
FAILS with cause :PROPERTY -LOCK-
UNAVAILABLE. (A specia form is provided that
causes such failures to be ignored, called WITHOUT-
PROPERTY-LOCK-FAILURES))

The owner of a lock, once it has snafed the lock,
attempts to actually make the property true by calling
ACHIEVE on the property. All secondary subscribers
wait for the property to be achieved by the owner. If
the owner's call to ACHIEVE fails, then al of the
lock's subscribers fail with cause :CONDITION-NOT-
ACHIEVED.

Once a lock property has been achieved, the lock's
subscribers, which were waiting for the owner to
achieve the property, continue to run. If the lock's
property subsequently becomes false, then the lock
property is said to be VIOLATED. (Note: a lock
property can only be violated AFTER it is achieved for
the first time.) When alock property is violated then
al the lock's subscribers faill with cause
:MAINTAINED-PROPERTY-VIOLATION.

Maintained property violations are detected by a daemon
(i.e. aconstantly running background process). This
daemon will aso attempt to restore or RECOVER
violated properties, so one possible response for a task
that has faled with :MAINTAINED-PROPERTY -

VIOLATION is to simply wait for the daemon to
automagically restore the property. A specia form,
WITH-AUTOMATIC-RECOVERIES is provided that
doesthis.

If the daemon is unable to restore a violated lock's
property then the lock's subscribers fail with cause
:UNRECOVERABLE-PROPERTY-VIOLATION.

7. SUMMARY

This paper has described ESL (Execution Support
Language), a language designed for encoding execution
knowledge in embedded autonomous agents. ESL
consists of several independent sets of features, including
constructs for contingency handling, task management,
goal achievement, and logical database management.
The contingency handling is based on a cognizant-failure
model, while task synchronization is based on a first-
class event data object.

Unlike its predecessors, RAPs, RPL and RS, ESL
targets a more utilitarian point in the design space,
aiming to be a useful programming tool first, and a
representation for automated reasoning or formal analysis
second. It does this by offering a toolkit of loosely
coupled, freely composable constructs rather than a
constraining framework. In thisrespect, ESL is similar
to TCA [10]. The main difference between ESL and
TCA isthat TCA isa C subroutine library, whereas
ESL includes new control constructs that have no analog
in C and thus cannot be duplicated in TCA. For
example, TCA cannot abort atask that has gotten into
an infinite loop; ESL can. Also, because ESL
introduces new syntax, it allows similar functionality to
be achieved in fewer lines of code.

REFERENCES

[1] R. Peter Bonasso, et al., "Experiences with an
Architecture for Intelligent Reactive Agents,” Journal of
Experimental and Theoretical Al, to appear.

[2] R. James Firby, Adaptive Execution in Dynamic
Domains, Ph.D. thesis, Yale University Department of
Computer Science, 1989.

[3] Erann Gat, "Integrating Reaction and Planning in a
Heterogeneous Asynchronous Architecture for
Controlling Real World Mobile Robots," Proceedings
of the Tenth Nationa Conference on Artificial
Intelligence (AAAL), 1992.

[4] Erann Gat, "News From the Trenches: An Overview
of Unmanned Spacecraft for Al Researchers, " Presented
at the 1996 AAAI Spring Symposium on Planning with
Incomplete Information.

[5] Erann Gat, "The ESL User's Guide", unpublished.
http://www-aig.jpl.nasa.gov/home/gat/esl .html

[6] Damian Lyons, "Representing and Analyzing action
plans as networks of concurrent processes, " I|EEE
Transactions on Robotics and Automation, 9(3), June
1993.

[7] Drew McDermott, "A Reactive Plan Language,”
Technical Report 864, Yale University Department of
Computer Science.

[8] Barney Pell, et a. "Plan Execution for Autonomous
Spacecraft." Working Notes of the 1997 AAAI Fall
Symposium on Plan Execution.

[9] M. J. Schoppers, "Universal Plans for Reactive
Raobots in Unpredictable Domains," Proceedings of the
International Joint Conference on Artificial Intelligence
(1JCAI), 1987.

[10] Reid Simmons, "An Architecture for Coordinating
Planning, Sensing and Action," Proceedings of the
DARPA Workshop on Innovative Approaches to
Planning, Scheduling, and Control, 1990.

Dr. Erann Gat is amember of the techincal staff at
the Jet Propulsion Laboratory and co-lead of the Smart
Executive component of the New Millennium DS1
Remote Agent autonomy system.

Acknowledgements—Barney Pell, Jim Firby and
Reid Simmons provided many useful comments on the
design of ESL. Thiswork was peformed at the Jet
Propulsion Laboratory, Cadifornia Institute of
Technology, under a contract with the National
Aeronautics and Space Administration.

